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1.0 INTRODUCTION

Defining the flutter and divergence characteristics of aerodynamic sur-
faces is a basic requirement to assure structural and performance integrity of
a given design in its operational environment. For systems which have struc-
tural nonlinearities another mode of aeroelastic response, limit cycle oscil-
lation, may be present. A comparison between limit cycle response and clas-

'L
y
1
1
1

o

sical flutter and divergence is illustrated in Figure 1. The limit cycle
response, Figure 1(c), is defined as a constant amplitude steady state oscil-
lation whereas the divergence, Figure 1(a), and flutter, Figure 1(b), are
unstable motions with increasing amplitude. The importance of the limit cycle

e e T I b, P e - o+
“

response is the potential of these oscillations to occur within the flutter

{ and divergence flight envelope. Frequently real hardware designs do have non-

| linearities in the surface support structure and/or actuators as a result of

{ . manufacturing tolerances and/or freeplay. When these nonlinearities exist,

the classical assumption of a linear force-displacement relationship is no
longer justified and an understanding of the nonlinear effect on the dynamic
behavior is required to evaluate the system response. In this study effort
analysis procedures were developed to characterize the limit cycle response of
aerosurfaces with discrete structural nonlinearities.

The effects of structural nonlinearities on aerodynamic surface response
. , has been studied both analytically and experimentally, Reference 1 through 5.
: In these studies several nonlinearities that are typically encountered in
» aerodynamic surface designs were considered. In the analytical studies of
References 1 through 4 the method of harmonic balance or describing-function
approach was used to characterize the nonlinear behavior of an aerodynamic

surface with root freeplay nonlinearities of the type shown in Figure 2.

| } - These nonlinearities are representative of a deadband or "slop" in the root
i support structure with and without a linear preload. The resulting behavior

St is such that the stiffness and force developed in the adjacent members dis a

nonlinear function of amplitude. The describing-function approach uses a one

‘ term Fourier Series expansion of the force to account for the effect of this

L !; ‘ nonlinear stiffness on aerosurface response. This method gave satisfactory

ity
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results when the amplitude of motion was greater than the magnitude of the

freeplay, Figure 2(a), or freeplay plus preload, Figure 2(b). However, it was
pointed out References,l and 2, that when the amplitude of motion is approxi-
mately equal to the magnitude of the nonlinearity, significant error can occur

i ~as a result of neglecting the higher harmonics in the series expansion of the
force-displacement relationship. The truncation of the higher harmonics is an
) 1 inherent drawback of the one-term describing function approach.

An experimental study of the limit cycle response of aerodynamic surfaces
with structural nonlinearities is discussed in Reference 5. During this study
a model was developed with root structural behavior which gave a variety of
nonlinear stiffness characteristics to the aerosurface. Wind tunnel tests
were conducted and data obtained to verify the model’'s response character-
istics. It was noted by the authors of Reference 5 that there exists a need
for improved analytical tools to accurately describe the nonlinear behavior in
order to better correlate experimental and analytical results

N

The objective of the present analytical study was to develop a technique
to predict limit cycle response of aerosurfaces with discrete structural non-
linearities that retains the flexibility and well defined procedures of the
describing~function approach (References 1 and 2) yet provides greater ac-
curacy and generality in modeling the nonlinear system behavior. To meet this
objective an asymptotic expansion method was used to model the nonlinear
force-displacement relationship that results when nonlinearities of the type
g ‘ -shown in Figure 2 are introduced at the aerosurface support. The primary

difference between the asymptotic method and the describing-function method is
| the capability of the asymptotic method to include higher harmonics in the

I 5 e g s

representation of the nonlinearity and obtain successively higher order ap-
proximations to the limit cycle response. Using the asymptotic expansion
technique a broader category of discrete nonlinearities than those shown in
: d figure 2 can be modeled.

Specifically, the problem investigated during the present study was the
limit cycle response of an aerodynamic surface in a subsonic airstream, Fig-

v TEes S T

j ure 3. The nonlinearities shown in Figure 2 were assumed to act at the root
support springs Ko and K 4 shown in Figure 3. This problem is represenative
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FIGURE 3 AERODYNAMIC SURFACE CONFIGURATION




of a missile control surface with a loose hinge and/or joint slippage in the
surface support structure and/or actuator. The aerodynamic forces acting on
the surface were modeled using a steady state aerodynamic theory. This theory
assumes the lifting force is proportional to and in phase with the torsional
motion of the surface which is assumed to be sinusoidal. Simple aerodynamics

"were used so that the influence of the nonlinearities on the surface response

could be evaluated by a much more tractable computational effort. The effects
of using a more sophisticated aerodynamic theory for the describing-function
approach were investigated and documented in Reference 2. There it was shown
that a more sophisticated aerodynamic theory can substantially change the
flutter results employed to predict aeroelastic response, but has no impact on
modeling the nonlinear behavior. The authors believe that the conclusions
presented in Reference 2 are applicable to the present analysis effort as the
Vinear aerodynamic theory does not impact the representations of the struc-
tural nonlinearities conrsidered in this study.

This study was organized into two separate tasks. The first task, dis-
cussed in Section 2.0, involved development of the asymptotic approximations
for the limit cycle response for each of the two nonlinearities shown in Fig-
ure 2. First and second order asymptotic solutions were formulated and com-
pared with the results obtained using the describing-function method of Re-
ferences 1 and 2. The equations for including the higher order harmonics in
the time history response calculations were also derived under this task. The
second task, discussed in Section 3, involved application of the developed
asymptotic solutions to predict the limit cycle response of the baseline aero-
dynamic surface chosen for this study. This baseline surface design is based
on the Harpoon missile control surface and is shown in Appendix A. In Appen-
dix A, representative flutter resuits for selected root spring configurations
are presented. These results are used in the applications discussed in Sec-
tion 3. Appendix B contains the detailed derivation of the asymptotic solu-
tions. While key equations are presented in the text of Section 2, inter-
mediate steps in the derivations are detailed in Appendix 8.




2.0 DEVELOPMENT OF ASYMPTOTIC SOLUTION

Application of the method of asymptotic expansions to model nonlinear
behavior of an aerodynamic surface response forms the basis of the procedures
developed in this investigation. The asymptotic expansion method used is the
Krylov-Bogoliubov-Mitropolski (KBM) technique. This technique is a perturbation
method based on a more general approach known as the method of averaging, and
is discussed in detail in References 6 and 7. In the method of averaging, the
motion is assumed to vary slowly with time and the amplitude and phasing are é
determined as time dependent functions of the system nonlinearities. The §
advantage of the method of averaging, and in particular the KBM technique, is
the stability of the solutions over sufficiently long intervals of time. This
type of solution is necessary for quantitative as well as qualitative analysis
of the limit cycle behavior of a nonlinear system. Another advantage of the
asymptotic expansion technique is that it provides a more accurate determination
of the nonlinear load-displacement relationship than the one-term describing-
function approach of References 1 and 2, yet can be used in much the same
manner. In both the asymptotic and describing-function technigues, the derived
expressions for the load-displacement relationship are used to define an
"effective" stiffness for the nonlinear element. This effective stiffness is
used in subsequent aerocelastic analyses.

The procedures for investigating the limit cycle response developed in this
study require defining the flutter characteristics of the aerodynamic surface.
In this study, flutter analysis of both rigid and flexible configurations were
analyzed. The flutter analysis is performed using the linearized form of the
equations of motion, as was done in the describing-function and other methods,
References 1 through 4. This approach assumes that an effective stiffness
adequately describes the elastic behavior for the infinitesimal oscillations at
flutter onset. The details of the flutter analysis for the baseline surface
analyzed in this study are presented in Appendix A.

During this study, the nonlinear aeroelastic system was represented by the
second order differential equation

n.~|a
o
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In Equation (1), € f(X) represents the nonlinear force acting on the elastic
system, X is the surface root displacement, wy, is the natural frequency of the
linear system (€=0) and Q(x) is the aerodynamic forcing function. The

f(X) term appears in Equation (1) as a result of the nonlinear load-displace-
ment relationship for the root support springs of the surface. It is the
nonlinear force term that is used to determine the form of the asymptotic
expansions derived to approximate the limit cycle response of the nonlinear
system.

In the asymptotic method a perturbation technique is used to expand the
contribution of the nonlinearity in terms of a small parameter or gage func-
tion, e . This expansion takes the form of an asymptotic series comprised of
integer powers of € . For the system respresented by Equation (1) the form of
the asymptotic solution defined by the KBM technique is given by

x = Acos y+ %1 " U, (Ryv) + 0 (ENH) (2)
n=

For the freeplay nonlinearity this equation was used directly. For the preload
nonlinearity it was modified as will be discussed in Section 2.2. The
displacement, X, as defined in Equation (2) consists of a linearly independent
combination of periodic functions, the first term being the fundamental har-
monic. The remaining terms expanded in powers c¢f € represent the asymptotic
approximation of the nonlinear contribution to the response. The functions U,
are periodic functions comprised of higher harmonics of the phasing parameter ¢
and the surface root amplitude A. N indicates the order of the asymptotic
approximation and the symbol 0(;"*1) represents term of order greater than N.
A and ¥ are, in general, functions of time defined by the ordinary differen-

tial equations
dA +]
af',.zi‘"“n”“" ) (3)
d]b = + % en B + 0 (CN+]) (4)
T Y% n

n=}

The right hand side of Equations (3) and (4) are series expansions of €, the

gage function, and parameters ap and B,. These a, and B, terms are determined
by integrating the nonlinear force term f(X) that appears in Equation (1) over
the total period of the oscillation which is defined to be 27 . The amplitude
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and phasing are thereby time dependent functions of the nonlinear load-
displacement relationship defined by Equations (3) and (4).

In the asymptotic method, as in most perturbation methods, the linear
system results are approached as € approaches zero. In this case, the ampli-
tude, A, becomes constant and the phasing, ¥, becomes a linear function of
time with a constant frequency, Equations (3) and (4). The displacement in
Equation (2) then takes the form of simple harmonic motion of linear elastic
systems. The basis of the asymptotic solution approach is to determine the
solutions of equations (2) through (4) for successively higher orders of €.
The procedure for determining the asymptotic solutions depend on deriving
appropriate functional forms of Up, an, and B,. This is accomplished by ex-
pressing the load developed in the nonlinear root springs by

F (x) = K{x)X (5)

K(X) is the nonlinear stiffness associated with the root support spring and X
is the root displacement defined by Equation (2). To determine the U,, an and

Bn coefficients only the first term of Equation (5) is retained and this term
is expanded in the Fourier Series. The functions ay, ﬁh and Up are expressed
in terms of the coefficients of this Fourier Series and therefore are inte-
grals of the nonlinear force term evaluated over a period of 2w In this
manner, the equations defining the asymptotic solutions of Equations (2)
through (4) are completely defined. Ouring this study the asymptotic solu-
tions were obtained for first and second order approximations, i.e., terms in
Equations (3) and (4) up to €2. The details of the Fourier Series expansions
and the determination of the asymptotic solutions are given in Appendix B.
The results of the asymptatic expansion for the two types of nonlinearities
considered in this study are summarized below.

2.1 Freeplay Nonlinearity

The freeplay nonlinearity is illustrated in Figure 2(a). The asymptotic
solution for the freeplay nonlinearity is derived directly from the equations




developed in the preceding section. The waveform of the developed load will
take one of the two shapes shown in Figure 4, depending on the relationship
between the magnitudes of the freeplay, S, and the amplitude, A, of displace-
ment. For A less than S no load is developed, Figure 4(a). When A is greater
than S the load is as shown in Figure 4(b). The nonlinear load is then de-
termined by specifying the freeplay S and the ampiitude A. The approach used
throughout this study is based on derivation of the "effective" stiffness K of
the nonlinear spring. This effective stiffness is used in Equation (5) to
determine the corresponding load. With the effective load substituted in
Equation (1), the equivalent linearized system is analyzed by conventional
methods. It is the determination of this effective stiffness term that uti-
lizes the asymptotic expansion techniques.

The "effective" stiffness K of the nonlinear spring including the in-
fluence of freeplay is defined in the asymptotic method as:

. 2 N
K=K (1 + e B] +¢e B2 + ... ¢ BN) A (6)

In this expression, the B, terms are directly related to the Bh coefficients

of the expansion of Equation (4).. The relationship between the 8, and B,

terms is derived in Appendix B. Therefore, rather than actually solving Equa-
tion (4), once the B, coefficients are determined and therefore the B,'s, the
"effective" stiffness is computed from Equation (6) directly. For the free-

play nonlinearity all a, coefficients are zero due to the symmetry of the

freeplay nonlinearity and the single valued odd form of the nonlinear load.

This implies, from Equation (3), that the amplitude of the limit cycle oscillation
is constant,

The expression for the first order approximation of the effective stiff-
ness, hereafter referred to as the first order solution, contains only the Bj
term in Equation (6). The form of this term (from Appendix B) is given as

e 8] =0 (A<S)
ss-i(1-2t +cos t, sin2t

t, = cos" (S/A)

)
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Using Equations (6), (7) and (8) the relatibnship between the effective stiff- |
ness and the linear spring rate for a freeplay nonlinearity may be obtained to

the first order.

The form of By developed from the asymptotic expansion technique is iden-
tical to that developed using the describing-function, References 1 and 2.
Since the describing function results, and hence the first order solutions are
discussed in detail in References 1 through 4, they will only be summarized
here for comparison and the remaining discussion focused on the higher order

solutions.

The second order solution is obtained by adding the effect of second order
terms to the first order solution. In order to determine the second order
approximation of the effective stiffness, it is necessary to derive the ex-
pression for the By coefficient that appears in Equation (6). Using the pro-
cedures for the asymptotic method, the second order correction term for a
single degree of freedom with a freeplay nonlinearity is of the form (from "

Appendix B)

ez 8, =0 (A<S)

2
2 1 ii In r -2 cost, sinnt ] (9)
€ 8,=-3 - 1!'n"T 1 1
n=3,5 n"-

where

[sin (n-1)t, sin (n+1)t1]
r =
n

—T - T
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and t) is definded in Equation (8). The second order correction terms of
Equation (9) contains the coefficients of the fundamental harmonic in the
Fourier Series expansion of the load and coefficients of all higher order
harmonics. Therefore the second order solutions are not restricted, as is the
describing-function approach of References 1 through 4, to a one-term, first
harmonic approximation. Substituting Equations (7) through (10) into Equa-
tion (6), the relationship between the effective stiffness and the linear
spring rate for a freeplay nonlinearity may be obtained for the second order
approximation. This relationship is shown in Figure 5 as a function of the
amplitude of motion to freeplay ratio, (A/S). For amplitude ratios (A/S) less
than 1, the effective stiffness is zero. As the amplitude increases, the
magnitude of K approaches that of linear stiffness K. This corresponds physi-
cally to the nonlinearity becoming less and less significant as the (A/S)
ratio increases and € approaching zero in Equations (3) and (4).

As shown in Figure 5, there is little difference in the results of the
first and second order solutions where the nonlinearity is most significant,
low (A/S) values, and the solutions converge very rapidly as (A/S) increases.
The implication here is that the stiffness behavior of system with a freeplay
nonlinearity is dominated almost completely by the fundamental harmonic and
the second order corrections have Tittle impact on the response. For a single
degree of freedom system, the effective stiffness value can be expressed in
terms of an effective frequency of the nonlinear system. For the stiffness
ratios shown in Figure 5, the corresponding first and second order solutions
expressed in terms of frequency are shown in Figure 6. In this figure the
asymptotic solutions are compared with numerical simulation results obtained
for a single degree of freedom system in Reference 1. As the figure indicates,
the asymptotic solutions predict frequency ratios very close to those given by
the numerical simulation.

2.2 Preload Nonlinearity

For the preload nonlinearity shown in Figure 2(b), the asymptotic func-
tions or displacements, defined by Equation 2, were modified to account for the
non-symmetry of the load displacement relationship. This displacement func-
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tion was assumed to be of a similar form to that used in Reference 1 and is

o, (A + 0 (™) (an
n=1

The coefficients Ay and Ay were defined such that the energy stored in the
nonlinear spring is the same for both positive and negative displacements. In
addition, it was required that Equation (11) result in a positive amplitude
equal to the initial displacement. Thus, the amplitude coefficients that

appear in Equation (11) are obtained from

po=fegVoren- P2 (P<h<P+2S)

A1
Ay =33 V(a-25)¢ + 45 (APe2S) (13)
In both cases, the coefficient Ay is obtained from the relationship

- +
X Ao + A1 cos ¢

(12)

A=Al +A (14)

It has been assumed that the influence of a preload nonlinearity is related to
positive displacements of the system. When amplitude of motion, A, is 123s
than the -preload P, Ay equals A and A, is zero. For this situation, the non-
linear problem is reduced to a linear problem.

The waveform of the developed load in the nonlinear spring will take the
shapes shown in Figure 7. As before, these waveforms are dependent on the
relationship between the magnitudes of the freeplay, preload and amplitude of
motion. Proceeding as was done for the freeplay case, the coefficients of
Equation (6) were defined using the load displacement relationship illustrated
in Figure 7. The first order approximation to the "effective" stiffness is of

the form
€B = 1.0 (A<P) (15)

[17 -t ¢ %—] (P-Ao) sin t, - % sin 2 t1] (16)

(P<A<P+2S)
for amplitude of motion A3p+25 we have,

1 2

(P~Ao) sin tz + %'(sin 2ty - sin 2 tz)]

2P
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where -1 P-AO
€ t'l = COS T] (18)
-] P+2$ - Ao
tz = CoSs ——rj— (]9)

As was determined for the freeplay case the first order asymptotic solution
and the describing-function solution of References 1 and 2 are equivalent.
Proceeding to the second order approximation the By coefficient of Equation (6)
is of the form (from Appendix B)

20 23 N ooy s r 20
e B, ~ ggé Y ;n" [Z(P A,) sin nt, - n]f (20)

I, is defined by Equation (10), ty by Equation (16) and By is given by Equa-
tion (15). For the amplitudes A 2P+2S

2 1 v n 1 %-P ( - < )
€ By = - = nzs:z 7= 33; [(T) sin nty - sin ﬁtz (21)

|
i .
i -(2 cos t1 sin nt1> + o,
' By and tp are defined by Equations (17) and (19) and
1 sin (n-1)t, - sin (n-1)t sin (n+1)t, - sin (n+1)t
3 G = 2 L 2 1 (22)
' n 2 (n-1) 2 (n+1)
1 ' The first and second order solutions for the stiffness ratio is plotted
" in Figure 8 as a function of the amplitude of motion to freeplay ratio for a
freeplay to preload ratio (S/P) of one. For amplitudes of motion less than
. the preload P the frequency ratio is one and the response is linear. As the
P amplitudes of motion increases, the stiffness, and in turn, the frequency

. decreases. This softening response is due to the deadspace in the spring
causing the effective stiffness to be less than the linear value. As the
amplitude increases well beyond the nonlinear region, the influence of the

| nonlinearity becomes small and the magnitude of frequency coefficient ap-

‘ proaches one.
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While both first and second order solutions shown in Figure 8 exhibit the
same trends, the second order solution predicts a significantly greater re-
duction in stiffness for amplitudes of motion near P+2S where the nonlinearity
is most significant. At higher values of the amplitude, the first and second
order solutions converge and asymptotically approach the linear solution. The
difference in the two solutions near the nonlinear region is directly a resuylt
of including higher harmonics in the second order approximation. These har-
monics are seen to influence the response most when the amplitudes of motion
fall within the deadband region of the load displacement curve, Figure 7.

. =

A comparison between the asymptotic solutions and numerical solutions are
shown in Figure 9. The numerical solutions, Reference 1, were obtained by
directly integrating the single degree of freedom equations of motion. Fi-
gure 9 shows that the first order approximation (describing-function) is un-

= T T

conservative in predicting the effective frequency behavior when compared to

the numerical results for amplitudes near the preload-plus-freeplay region, ]
(A/S=3). On the other hand, the second order solution tends to be conserva- :
tive in predicting the effective stiffness. At amplitudes of motion near or

greater than twice the preload-plus-freplay values, there is little difference

between the numeri:al and first or second order solutions. Based on these

comparisons, it is apparent that the higher harmonics contribute significantly

to the response at amplitudes of motion near the nonlinear region of the

load-displacement relationship for the preload nonlinearity.

2.3 Time History Results

In addition to the computation of the effective stiffness of the non-
linear system, the asymptotic method provides a means of obtaining higher
order approximations to the response time history. The time dependent motion
of the nonlinear system as defined in the asymptotic method is given by Equa-
tion (2). In this expression, the functions Un contain the contributions of
higher harmonics in the response and exclude any contribution of the funda-
mental harmonic. Application of the asymptotic method consists of determining
the appropriate expression for U, based on the order of the asymptotic ap-
proximation and the number of harmonics desired. The general form for the ex-
pression for each type of nonlinearity considered in this study is given be-
Tow.,

20
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2.3.1 Freeplay Nonlinearity

For the freeplay nonlinearity the form of the U function is determined
using the coefficients of the Fourier Series expansion of the load displace-
ment relationship. From the results of Appendix B to the second order

U1 = -% 25 [rn - %— cos t] sin nt1] cos nut (23)

N is odd, I, is defined in Equation (10) and w is the effective frequency.

The time history results for the freeplay nonlinearity are shown in Fig-

ures 10 and 11. In Figure 10, the time history response, defined by Equa-
tion (2), is plotted for an A/S ratio of 3 and an initial amplitude of 0.29.
The limit cycle motion shown in Figure 10 exhibits a very regular periodic
motion with an almost constant amplitude and frequency corresponding to effec-
tive stiffness value determined by the relationship defined in Paragraph 2.1.

{ The period of the time history indicates that the response is controlled al-
most entirely by the fundamental harmonic, the first term of Equation (2).
The time history of the second term of Equation (2), corresponding to the
contribution of higher harmonics, is shown in Figure 11. Terms up to the
eleventh harmonic were included in Equation (23) in the determination of U.
Note that although the frequency of U is higher, the amplitude is signifi-
cantly lower than that of fundamental harmonic. These results are consistent
with the comparisons between the first and second order solutions discussed in
Paragraph 2.1. The results show the first order solution utilizing a one term
Fourier Series expansion of the load is sufficient for the freeplay nonlin-

l earity and the higher harmonics of the second order solutions have little
impact on the system response.

2.3.2 Preload Nonlinearity

For the preload nonlinearity the form of the U function is determined in
the same manner as was done for the freeplay case. From the results of Ap-
pendix B the second order solutions for amplitudes of motion in the range PSA<

| P+2S is defined as A, .
; U‘I - % [2(%)% + (21r-t1) 7\'." « 2 sin tl]

- % ’éz c?“"s-j'j-"l 3%? [(P-Ao) sin nt, - rn]f (28)
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I, and t; are given in Equations (10) and (16). For amplitudes of motion A
P+2S

A
0, = %[7\-3 (t1 ‘- tz) <s1n t, - sint ) 2— (tz-t‘)
S _1 3 cos net |1 ( )(sin nt (25)
) 2(“1) t’] v n§2 n2-1 ) [ N !

- sin ntz)] 2 cos t] sin nt] +0 i

t1, tp and o, are defined by Equations (18), (19) and (22).

The time history results for the preload cases are shown in Figures 12
and 13. In Figure 12 the displacement time history for a preload nonlinearity
with an initial amplitude of 0.2° is shown. In this figure the two distin-
guishing features of the preload time history is the offset of the response
from zero and the presence of higher harmonics in the response. The offset is
due to the presence of the preload and the unsymmetric nature of the nonlinear
load-displacement relationship. The higher harmonics in the amplitude are due
to the contribution of terms appearing in U. The time history plot of the
higher harmonics in the U coefficient is shown in Figure 13. 1In Figure 13 the
offset in the response is also present. Also note that comparing the magni-
tude of the time histories in Figures :2 and 13 shows that the U terms are
greater than forty percent of the totai amplitude. This indicates that a
significant amount of the strain energy developed in the root support springs
cycles with a frequency greater than the frequency of the fundamental harmon-
ic. Based on these observations, the influence of higher harmonics is seen to
be significant in the prediction of both the effective frequency and limit
cycle response of the system response for a preload nonlinearity.
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3.0 DETERMINATION OF AERODYNAMIC SURFACE
LIMIT CYCLE RESPONSE

In this section the equations and techniques developed in Section 2.0 for
the freeplay and preload nonlinearities are applied to predict the limit cycle
response’ of the baseline aerodynamic surface. The frequency and dynamic pres-
sure at which the limit cycle oscillations are sustained were determined as a
function of the amplitude of motion and magnitude of the nonlinearity. The
aeroelastic data used was based on linear flutter results obtained for the
effective system where the nonlinear terms in the equations of motion were
replaced by the corresponding effective stiffness calculated by the asymptotic
methods. The flutter results for both a rigid and flexible representation of
the baseline aerodynamic surface were determined using standard eigenanalysis
procedures and are presented in Appendix A,

The geometry and physical characteristics of the baseline control surface
are also presented in Appendix A. The results of this section and Appendix A
are for a specific aerodynamic surface using a simplified aerodynamic theory.
However, the application of the developed procedure is not restricted to these
conditions. The procedures are applicable to a variety of surface geometries,
aerodynamic theories or flutter analysis techniques.

Application of the asymptotic expansion results to predict the limit cycle
response of the baseline aerodynamic surface follows the same procedure as
developed in References 1 and 2. The effective uncoupled frequency was
calculated from the asymptotic solutions for each nonlinearity and corresponding
degree of freedom. The dynamic pressure defined by Equation 26, at which the
1imit cycle oscillation is sustained, was then determined from the data in
Appendix A.

q=70 2 (26)

The results for the freeplay and preload nonlinearities considered in this study
follow.
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3.1 FREEPLAY NONLINEARITY 1

Jo—

The procedure followed to determine the limit cycle response of the aero-
dynamic surface with root freeplay structural nonlinearities is shown in Fig-
ure 14. This figure shows the step-by-step procedure for introducing the
nonlinear effects in either or both root pitch and root roll degrees of free-
dom.

Results for the rigid baseline control surface with a freeplay nonlin-
earity in the root pitch degree of freedom are shown in Figure 15. These
results are for a freeplay nonlinearity in the root pitch degree of freedom,
%g of 0.2 degrees and an uncoupled root pitch frequency of 215H,. The data
indicates the variation in the effective dynamic pressure at which limit cycle
oscillations will be sustained as a function of the amplitude-to-freeplay
ratios in the root pitch degree of freedom. This figure shows the influence
of the freeplay nonlinearity is most pronounced for amplitudes of motion near
the freeplay value. For successively larger amplitudes of motion, the effec-
tive stiffness approaches the uncoupled stiffness value and the critical dy-
namic pressure approaches that of the linear system.

TN rere TN - WP~ S et

R

The results obtained using the first and second order asymptotic solu-
tions to predict the 1imit cycle behavior are compared in Figure 15. They
indicate, as. was found in Section 2.0, that the first and second order solu-
tions differ only slightly for the freeplay case. Again, this behavior is
attributed to the dominance of the fundamental harmonic in the response.

Results for freeplay nonlinearities in root roll and for two freeplay
nonlinearities were found to differ only slightly from those of References 1 and 2.
The results for these cases are not repeated here and the reader is referred
to References ) and 2 for more details on the influence of freeplay
nonlinearities on the limit cycle behavior.
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3.2 PRELOAD NONLINEARITY

The procedure used for predicting the limit cycle response of the rigid
baseline control surface with a preload nonlinearity is very similar to that
presented in the preceding section for the freeplay nonlinearity. The compu-
tational steps to be followed to predict the limit cycle response are shown in
Figure 16. Linear system flutter analyses are conducted for variations in the
effective stiffness parameter. These flutter results are then modified to ‘
account for the presence of the structural nonlinearities. |

Pis GEme Hew P NN

Using the second order asymptotic solutions, the results shown in Fig-
ure 17 were obtained for a rigid control surface having a single root roll
preload nonlinearity. This figure shows the change in the dynamic pressure as
a function of root roll amplitude of motion to freeplay ratio, A/S, for vary-
ing freeplay-to-preload, S/P, ratios. For amplitudes of motion less than the

. preload, the critical dynamic pressure equals the flutter dynamic pressure of
the linear system. As the amplitude of motion increases, the influence of the
freeplay is reflected in the rise of theAdynamic pressure. This occurs as a

; - result of the softening effect on the effective root roll stiffness which

* results in a higher dynamic pressure for this particular aerodynamic surface.
As the amplitude of motion continues to increase, the influence of the non-
linearity decreases and the results again approach those of the linear system.

In Figure 18 the results obtained for both first and second order asymp-
totic solutions are shown for a preload nonlinearity in the root pitch degree
of freedom for a rigid control surface. From this figure the influence of the
higher harmonics is apparent. While the trends are basically the same, the
second order solution predicts a lower value of critical dynamic pressure to

-~ sustain the limit cycle oscillation than does the first order solution for
amplitudes of motion near the P+2S value. This is directly related to the

- - effective stiffness behavior predicted for this amplitude range as was dis-
cussed in Section 2.0 and illustrated in Figure 8.

! First and second order solutions for the rigid baseline control surface
having preload nonlinearities in both root degrees of freedom are shown in

: 32
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Figure 19. The results presented are for a 0.2 degree freeplay region in both
degrees of freedom and a freeplay-to-preload,S/P, ratio of two. The two pair
of curves shown in this figure are for two different values of the amplitude-
to-freeplay ratio, S/A. The effective stiffness of the preload nonlinearity
is a double-valued function as illystrated in Figure 8. Therefore, the re-
sults shown in Figure 19 are for double-valued amplitude of motion ratios.

The larger S/A values correspond to amplitudes less than the quantity P+2S,
whereas the lower ratios correspond to amplitudes in excess of this value.

As for the case of a single nonlinearity, the presence of the higher har-
monics can substantially change the prediction of the limit cycle response.
In both Figures 18 and 19, the nonlinearity in root pitch is more critical in
terms of initiating a limit cycle response. For root pitch nonlinearities the
results indicate that the limit cycle response amplitude can be several times
greater than the magnitude of the freeplay and can be sustained at dynamic
pressures well below the flutter critical value.

A flexible control surface having a breload nonlinearities in both root
degrees of freedom was also studied. The results for a 0.2 degree freeplay in
both root degrees of freedom and a freeplay-to~prelcad ratio,S/P, of two are
shown in Figure 20. As with the rigid control surface studies of Figures 18
and 19, the amplitude ratios are double valued.

Figure 20 shows that at higher uncoupled roll frequencies, the second
order solutions predict a somewhat higher critical dynamic pressure than does
the first order solution at the same amplitude-to-freeplay ratio. This be-
havior is a direct result of the linear flutter data, as the trends in the
effective stiffness are the same for both the rigid and flexible cases.
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3.3 CORRELATION WITH NUMERICAL RESULTS

The asymptotic solutions obtained in the preceding paragraph were briefly
compared with the numerical simulation results of Reference 1. The objective
here was to compare the results of the describing-function (first order) solu-
tions and the asymptotic (second order) solutions with the “exact* numerical
solutions in the accuracy critical regions. From the results of Reference !
it was concluded that the worst correlation between the describing-function
results and simylation results was observed for the case of a flexible control
surface with two preload nonlinearities. The authors of Reference 1 attribu-
ted this discrepency to the influence of higher harmonics neglected in the
describing~-function approach. For this reason this configuration was used to
compare the three solution approaches.

The aeroelastic response results for the flexible baseline control sur-
face with two preload nonlinearities is shown in Figure 21. The dynamic pres-
sure required to sustain the limit cycle oscillation is plotted as a function
of the freeplay-to-amplitude ratio, S/A. The curves are for a system with
uncoupled pitch and roll frequencies of 215Hz and 140 Hz, respectively. In
Figure 21(a), the root roll motion is shown,and in Figure 22(b) the root pitch
motion is shown. The results of these comparisons show a better correlation
between the second order asymptotic solution and the numerical simulations
than was obtained using the first order solutions. This supports the con-
clusions of Reference 1 that the source of the error in the one term des-
cribing-function approach is a result of the higher harmonics not being in-
cluded in modeling the nonlinear behavior.
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4.0 CONCLUSION

The presence of structural nonlinearities can adversely affect the
aeroelastic response of aerodynamic surfaces. Of particular concern is the
occurance of a sustained 1imit cycle response which may lead to structural
damage of the aerodynamic surface, support structure and equipment components
{ ‘ such as control actuators. The results obtained during this study show that

‘P - aerodynamic surfaces with structural nonlinearities can become susceptible to
. limit cycle behavior at dynamic pressures below the linear flutter value. The
nature of the limit cycle response was found to be a constant amplitude motion
with a steady state frequency expressed as a function of the magnitude of the
nonlinearity and the amplitude of the oscillation.

The objective of the present study was to develop an analysis procedure
to predict aerosurface 1imit cycle response that retains the flexibility and
well defined procedures of the describing-function approach, yet provides greater
accuracy and generality in modeling the nonlinear system behavior. This was

——
’

accomplished by using an asymptotic expansion technique to derive a relationship
between the parameters characterizing the structural nonlinearity and the ampiitude
and frequency of the limit cycle response. 4

The overall conclusion from this investigation is that the use of the

asymptotic expansion method results in an accurate prediction of the aerodynamic
surface limit cycle response. The procedure described in this study was used to
investigate the interrelationship between the magnitude of the nonlinearities,

, flight conditions and the nature of the resulting limit cycle response. First and
second order asymptotic solutions were developed for a freeplay type nonlinearity
with and without a linear preload in the root support structure. The asymptotic
solutions, which contain the contribution of higher harmonics, were compared with

o the describing-function approach which contains only the first harmonic. It was

' shown that the first arder asymptotic solutions and the describing-function

approach were identical and the higher order asymptotic solutions could be used to

account for the contribution of higher harmonics in the limit cycle response.

a3
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The significance of the higher harmonics in predicting the nature of the
limit cycle response was found to depend on the particular nonlinearity studied.
Ouring the development of the second order asymptotic solutions for the freeplay
nonlinearity it was concluded that the higher harmonics had small effect on the
results, Even for amplitudes near the freeplay magnitudes, where the nonlinear
effect is strongest, the higher harmonics were found to have little influence.
These results are reasonable when one considers the exceptionally good
correlation demonstrated between the first order, single term solution and the
exact numerical solution. It is concluded that little is gained in the prediction
of limit cycle response by including the higher order solutions for the freeplay
nonlinearity,

In the case of the preload nonlinearity the influence of higher harmonics
was found to have a definite impact on the predicted limit cycle response. When
the first and second order solutions were compared for this nonlinearity, the
latter predicted a considerably greater reduction in the effective stiffness at
amplitudes near the freeplay region of the load-displacement curve. This behavior
was observed to be consistent with the numerical simulation results presented in
Reference 1. As the amplitude of motion became larger than the preload-plus—
freeplay magnitude, the first and second order asymptotic approximations of the
effective stiffness converged. As amplitudes increased further both soluticns
approach the linear solution results. In addition to the influence on the
effective stiffness values the higher harmonics were also seen to contribute to
the form of the expressions to determine the 1imit cycle time history response.
Variations of amplitude in the computed waveform for the limit cycle response
could be attributed directly to these higher order harmonics. It was concluded
from these results that for the preload type nonlinearity the second order
asymptotic solutions should be used to accurately predict the nature of the limit
cycle response.

This study has shown the applicability of the asymptotic expansion approach
to account for the influence of structural nonlinearities in the limit cycle
response analysis of aerodynamic surfaces. The method developed employs the
asymptotic solutions to determine the effective system parameters governing the




nonlinear response. The ability to include the influence of higher harmonics in
the nonlinear load-displacement relationship and obtain solution accuracies to any
desired order have been demonstrated. The methods were applied to two simple
nonlinear systems and the potential influence of higher order solutions on the

limit cycle response was investigated. The applicability of the asymptotic methods,
however, is not restricted to these nonlinearities or undamped systems.
Investigations of the asymptotic solutions for systems with other types of non-
linearities, including nonlinear damping dependent on the displacement and/or its
derivatives, are feasible using this approach.
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APPENDIX A
Flutter Analysis of Baseline Aerodynamic Surface

The aeroelastic analysis performed in this study utilized the flutter
results for the effective or linearized representation of the baseline aero-
dynamic surface. The physical description of the baseline surface and the
flutter results for both rigid and flexible cases are discussed below.

Properties of the Harpoon missile control surface were used to define the
baseline surface configuration which was used throughout the study. The ge-
ometric configuration of the control surface is shown in Figure A-1. The
structural nonlinearities that were investigated are associated with the root
support. Presented in Figure A-2 are the inertia properties of the control
surface. The first two rows and the columns of the inertia matrix are asso-
ciated with rigid root roll and pitch motions while the last two diagonal
elements are the generalized masses of the control surface modes. The
off-diagonal terms, the PF quantities, represent the inertia coupling between
rigid and flexible motions. The mode shapes associated with the first two
control surface cantilever modes are given in Figure A-3. These modal data
were used when investigating a flexible control surface configuration.

Representative flutter results for the baseline control surface take the
form illustrated in Figures A-4 and A-5. The results given in Figure A-4 are
for a rigid fin while those for the flexible fin are given in Figure A-5.
These two figures show the variation in the flutter critical dynamic pressure
as a function of the effective root roll frequency for various values of the
effective root roll frequency.
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APPENDIX B
DETAILED DEVELOPMENT OF THE ASYMPTOTIC SOLUTIONS

In the discussions of the asymptotic solutions presented in Section 2.0,
the first and second order approximations to the limit cycle response were
presented. The details of the computational steps are given here for the
freeplay and preload nonlinearities.

As discussed in Section 2.0 the nonlinear equations of motion for the
system considered in this study can be written as

93% v o 2x = e F(x) + Q) (81)
dt

In the asymptotic expansion methods, the solution of Equation (B1) is assumed
to be of the form
N

n=) n :
The amplitude A, and phasing parameter ¥ are determined from
N -
%% =Y "o +0 (M (B3)
n=1 n

N N+
du Ng +0 (e ) (B4)
ot "’°+n2=1€. "

The term N indicates the order of the asymptotic approximation. For this
study solutions up to the second order (N=2) were determined. The 8, and B8,
terms of Equations (B3) and (B1) are functions that satisfy Equation (B1) and
are expressed in terms of coefficients obtained from the Fourier Series ex-
pansion of the nonlinear function f(X) in Equation (B1).

*In Appendix 8, the number in the second bracket identifies identical
equations from Section 2.0. As equations (B-1), (B-2), (B-3) and (B-4) were
discussed in detail in Section 2.0 they will just be presented here. Refer to
Section 2.0 for a complete description of these equations.
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The first step in the solution procedure is to determine functions a1,
355 Bys Bos and Ul. These functions can be derived by expanding the nonlinear
function f (y) in a Fourier Series, substituting Equations B2 through B4 into
Equation B1 and equating coefficients of sin y and cos y. These functions are
I given by the following relations,

2n
L _ : (85)
! ay = - f (A cos ) sin ydy
’ . 1 zwuo A
; 1 2w
: By * - TR f f (A cos w) cos wdy (86)
o
a w g cosny +h sinny
: U]:;_%-_LZ_Z n > n (87)
o “95¢ n=2 n--1
( where
1 2n .
z -2-;[ f (A cos ¥) cos nydy (88)
o
1 21"
hn = -2-;_/- f (A cos y) sin nydy (89)
o

The terms ay, By, g, and h, are the coefficients of the Fourier Series ex-
pansion of the nonlinear force f(X) acting on the system. The second order
coefficients ap and By can be expressed in terms of Equations (BS) through
(B7) and the derivative of f(X) as

|
!
| 4 -1 1 2r _
"! az = T 2 % 31 + a.l Tf - ?_f ¢ sin ydy (810)
1
t

951
Id °
s

" 8, = ;Bz_‘h"‘ﬁ_ 1 U‘?“Ico "

- 2" %W |h KT Tk s
t
| : Y
; i [ U1focosw+a]cosw-As.‘sinw+wr
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l By computing the terms in Equations (BS) through (B12), substituting into

l Equations (B3) and (B4) and integrating, the amplitude A and phasing
parameter, § approximated to the second order, are obtained.

Equations (B5) through (B12) are for the general case. For the two non-
linearities considered in this study, these equations can be reduced to a much
simpler form. First, the form of f(X) for the freeplay and preload nonlin-
earities is such that all @, and h, terms in Equations (BS), (B10), and (B9)
are identically zero. For this case, Equations (B3) and (B4) yield

(813)
A = const
p=uwt =|w +eB + e2 B )t + const. (B14)
0 1 2
' or _
{ w=lw +¢eB +e28) (815)
: o 1 2
‘ where @ is the effective frequency approximated to the second order. Equa-

tions (B87) and (B1) then become

]
| bl 1 5 g (B16)
1 w2 Te2 g nla

1
By = "Z'w_"i__mol\ J $ cos vdv

i The computational effort of this study was centered on determining Uy, By and
|

,- Bygiven by Equations (B6), (B16) and (B17), respectively.

,'v."'" X
' - The form of the effective stiffness to the second order given by Equa-
i ( .
f : tion (4) is
! e
i L . N
' [; ' ‘K.K(1+¢B1+;232+...t BN) (818)
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This expression can be obtained from Equation (B15) by squaring both sides and
retaining term up to € 2, This yields,

; 2 ) 2 (, , [
T.Fz'uo 1+is]+:—°5(e1 + 28, uo)] (819)

Substituting Equations (B6) and (B17) for By and B, into Equation (B19) and
simplifying yields

K P e, [1 +c B+ el 52] (820)

f The relationship between By and B, and £y is defined as

| & ,f

. B=2g (821) i
; [+]
s 1° 2n i
- B] = -A—? / f (A cos ¢) cos ydy (B822) i
- 7Aw ,

o o]

. where @ is defined by equation B-12. }

{ Note that here it is .implied that
! er (823)
‘ 32 = - W J 3 cos ydy
{
Vim @ =l (824)
£+0

f Using the relationship between the effective stiffness and natural frequency,
Equation (B18) is obtained directly from (820).

Summarizing the computational procedure, the first step is to compute o
for the linear system. Then the term By is obtained from Equation (B6). Next
coefficients By and B> can be determined using Equations (B12), (B21) and
‘ (B22). At this point the second order correction to the effective stiffness
i is obtained from Equation (B18). The computation of the time domain solution
b then requires solution of Equations (B8), (B14) and (B16). The form of these
' relationships are presented below for the two nonlinearities considered in
this study.
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FREEPLAY NONLLINEARITY

In order to compute the coefficients of the asymptotic approximations,
the initial step is to expand the load relationships, L(t) in a Fourier
Series. This load relationship is shown in Figure 4 of the text and is

expressed as

L(t) = % o for 0 <t < t1 (825)
K[A sin t - S])for ty<t<n

This load is in the form of the function F(Acosy) in Equation (B21) so the
first Fourier coefficient corresponds to the By term in Equation (B20). Since
the load function L(t) is a single-valued odd function its Fourier Series
representation is of the form

L (t) = 2: bn cos nt (B26)
n=1
2n
L (827)
by = 77 L(t)cosnt

o]
As mentioned above the by term of Equation (B27) and By in Equation (B20) are
related by the expression

. [ (828)
By = (m;z by - ')
The form of the by term for the load of Equation (B25) is,
Ao 2
= 9 - - i
O (1\' 2t -sin2 t]) (B29)

Computation of the By term of Equation (B23) requires the coefficients of the
higher harmonics of Equation (B26). A general expression for these higher
harmonics is determined as

bn s o (n = 2’4,001) (830)
w A
3 . (831)
bn = —%— [rN -5 sin n t]] (n = 1,3,5...)
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(832)

sin (n-I)t] sin (n+1)t1]
1~n'[ T T T2 (nel)

By successive substitution of Equation (B30) into Equations (B16), (B12)

and (B23) the By coefficient of Equation (B18) is obtained. The form for the
freeplay nonlinearity is given in Equation (B33).

L) T

%5 —2-"—1 [rn - % cos t, sin nt1] (833)
n=3.5 n°-

|

B,

PRELOAD NONLINEARITY

The procedure for deriving the coefficients of the asymptotic approxi-
mation of Equation (B18) for the preload nonlinearity follows the same proce-
dure used for the freeplay nonlinearity. The load-displacement relation for
the preload nonlinearity is shown in Figure 7 and is defined as

(A° + A, cos t - 25)K for 0 <t < t1

L(t) = (Ao + A, cos t)K for t,<te 2r - t,
PK f0r21°t2<t<21't1
where (A, + Ay cos t - 25)K for 2x - t, < t <21
P+25-A
t, = cos”! ( ) (835)
A
P-A (836)
= -1 9y -
tz cos (-11——)
The Fourier Series expansion of the load relationship is defined as
b -
L(t) ==2+ Y b cosnt+a_ sinnt (837)
z = n n
L[ (838)
bo - f L (t) dt

[} .
by is given by Equation (B27) and all a, coefficients are zero for the func-

tion given by Equation (B34).
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The by coefficients of Equation (B35) for the preload nonlinearity where
P<A<SP+2S are

2 p

w A
=0 1 . . (839
w 2I\ [
=0 1 2 . \ (840
b1 = — Lw t + _A (P-Ao) sin t] - -5- sin 2 t]] )
w Ay [2 (PR )) | (841)
bn = ™ A] sin nt] - l‘n

ty is defined in Equation (B35) and Ty is defined in Equation (B32). For
.mplitude of motion A2>P+2S

p— i

wOZA Ao + p t -t ZS
by = = -AT tytretyJ+ \sin t, - sin t 'K]' 1 A.I t; (842)

moZA 2 ( + ) int
b] = - 1|'+t2-t] - I]— P ZS-AO sin 2

L
2 . 1. e (843)
+I1- (P-Ao) sin t1 + 5 (sm 2 t2 sin 2 t1)

mozp‘ 2 . . ( ¢ ) . (844)

bn = — F (Ao'P) (sm ntz-sm nt]) =25 {sin n 1 o,

ty and tp are defined by Equations (B35) and (B36) and @y, is defined as.

[sin (n-])t2 - sin (n-1)t] sin (n'M)‘t:2 - sin (n+'l)t1]
% * FACR) M A )

The detailed derivation of the asymptotic solutions for both the freeplay
and preload nonlinearities have been presented here. These derivations were ]
included to supplement the discussions of section 2.0 and should be referenced
when more detail is required.







